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Abstract. The tilings of rhombi in two dimensions and of rhomboedra in three dimensions are
studied when they are constrained by fixed boundary conditions. We establish a link between
those conditions and free or periodic boundary ones: the entropy is written as a functional
integral which is treated via a saddle-point method. We can exhibit the dominant states of the
statistical ensemble of tilings and show that they can display a strong structural inhomogeneity
caused by the boundary. This inhomogeneity is responsible for a difference of entropy between
the studied fixed boundary tilings and free boundary ones. This method uses a representation
of tilings by membranes embedded in a higher-dimensional hypercubic lattice. It is illustrated
in the case of 60 degree rhombus tilings.

Introduction

Since the discovery of quasicrystals in 1984 [1], a great deal of work has been accomplished
to get a precise microscopic structural description of these metallic non-crystalline alloys.
It was rapidly understood that Penrose-like [2] tilings could provide very good microscopic
models of quasicrystals: it is highly presumed that favoured atomic motifs form tiles.
However, the best description for real quasicrystals remains an open question: according
to the mechanisms involved to describe the structure and explain its stability, the studied
tilings can be perfect Penrose-like arrangements of tiles or random ones. Indeed, despite
their random character, the latter exhibit global quasiperiodic symmetries [3, 4] and are
therefore good candidates for quasicrystal models. The random tilings use the same tiles
as the perfect ones. However, in the former, local rearrangements of tiles—called localized
phason flips—are allowed. These degrees of freedom give access to a great number of
microscopic configurations. This is the random tiling model (RTM) [5, 6, 4]. It involves an
important contribution of the tiling entropy to the total configurational entropy, and therefore
to the free energy. This phenomenon is supposed to favour the quasicrystal against other
competitive phases.

Among the different techniques developed to estimate this tiling configurational entropy,
the partition method [7–11] presents the advantage to set a particularly well-defined
combinatorial problem. However, the boundary conditions of the tilings considered in this
method are different from the usual ones. As a consequence, the configurational entropy
per tile of partition tilings is lower than the usual free boundary one: in the simplest case
of 60 degree rhombus tilings, the respective values can be exactly calculated and are about
0.261 [7] and 0.323 [12] at the infinite-size limit when the three fractions of tiles are equal
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(the configurational entropy per tile is simply the logarithm of the number of tilings divided
by the number of tiles).

Elser [7] offered a qualitative argument to explain this difference. The goal of this paper
is to go further: we shall establish the link between the different kinds of boundary conditions
and we shall give a qualitative as well as quantitative explanation for the difference of
entropy per tile. Hence, we shall connect two related models of statistical mechanics,
which are usually treated via rather unrelated methods.

A preliminary part of these results was briefly exposed in [10]. Most of them were
concisely presented in a shortened version during the Sixth International Conference on
Quasicrystals (ICQ6), in Tokyo [13].

1. Random rhombus tilings and boundary conditions

In this paper, we shall considerd-dimensional tilings of rhombic tiles (rhombi in two
dimensions, rhomboedra in three dimensions) which tile a region of the Euclidean space,
without gaps or overlaps. The standard method for generating such structures consists
of a selection of sites and tiles in aD-dimensional lattice(D > d) according to certain
rules, followed by a projection onto a suitabled-dimensional subspace and along a generic
direction. We then say that we have aD → d tiling problem. It is the so-called ‘cut-
and-project’ method [3, 14, 15]. By construction, the so-obtained rhombic tiles are the
projections of thed-dimensional facets of theD-dimensional hypercubic lattice. There are(
D

d

)
different species of tiles. In the simple 3→ 2 case, this amounts to three kinds of

differently oriented 60 degree rhombi.
Usually, those tilings have periodic or free boundary conditions and it is generally

admitted that the respective entropies are equal at the thermodynamic limit—for given
fractions of tiles. In the following, we shall consider fixed boundary conditions [10],
related to the partition method. The region to be tiled will be the generic ‘shadow’ of a
D-dimensional rectangular parallelepiped, the sides of which take integer lengths in the
D-dimensional hypercubic lattice. This generic shadow is called a zonotope [16], denoted
by Z. Whend = 2, the zonotopes coincide with the 2D-gons. The tiles are supposed to
perfectly fit with the boundary∂Z of Z. Examples of 3→ 2 tilings are given in figures 1
and 3.

The entropy per tile is a function of the different fractions of tiles, or in other words
a function of the side lengths of the zonotopeZ. For example, the 3→ 2 tilings are
enumerated by MacMahon’s formula [17], which was derived at the beginning of this
century:

W 3→2
k,l,p =

(k + l + p − 1)![2](k − 1)![2](l − 1)![2](p − 1)![2]

(k + p − 1)![2](l + p − 1)![2](k + l − 1)![2]
. (1)

Here, this formula has been rewritten in terms of second-order generalized factorial functions
[8]:

k![0] = k k![m] =
k∏

j=1

j ![m−1]. (2)

The quantitiesk, l andp denote the side lengths of the hexagonal boundary. The case when
all these lengths are equal will be calleddiagonal in the following, and the corresponding
entropies will be called diagonal entropies.

In appendix A.2, we rederive this formula via a purely combinatorial method which
will prove to be useful in the following, the Gessel–Viennot method [18, 19].
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Figure 1. Three-dimensional representation of a 3→ 2 tiling.

In the following we shall be interested in the infinite-size limit entropy of such tilings
when the different fractions of tiles are given. This amounts to making the side lengths of
the boundary tend to infinity with their relative ratios held fixed: the number of tiles goes
to infinity while the shape (but not the size) of the boundary is kept fixed.

2. Continuous limit and functional integral

2.1. Membrane representation of tilings

This point was already developed in previous publications [4, 10, 11] and is closely related
to the cut-and-project method. Therefore we shall only give a brief presentation of this
method. The main idea is that a random tiling can be lifted as ad-dimensional non-flat
structure embedded in aD-dimensional space.

This structure is acontinuous membraneof d-dimensional facets of theZD hypercubic
lattice. When this membrane is projected along a suitable direction, the projections of these
facets are precisely the tiles that the tilings are made of (section 1); its continuous character
guarantees the absence of gaps in the so-obtained tiling. Such a membrane is said to be
directed to emphasize the fact that its projection does not create any overlap.

For example, figure 1 displays a 3→ 2 tiling, which can also be seen as a two-
dimensional non-flat directed membrane embedded in a cubic lattice. To get a tiling, this
membrane must be projected along the(1, 1, 1) direction of the cubic lattice. This point of
view can be generalized to arbitrary dimensions. This correspondence is always one-to-one.

In thisD-dimensional point of view, thed-dimensional space on which the membranes
are mapped to get the tilings is called the real spaceε. Its perpendicular space is denoted by
ε⊥. For the sake of convenience, we choose the space coordinates to be thed coordinates
on ε and theD − d ones onε⊥. Since the membranes are directed, they can be seen as
mono-valuate functionsφ fromRd toRD−d . More precisely, in the case of fixed boundary
conditions, these functions are defined on the zonotopal regionZ of ε.

In the case of free boundary conditions, if the functionφ has a large-scale global gradient
∇φ = E, the random tiling model states that the fractions of tiles are controlled by this
gradient and, therefore, the entropy per tile can be written as a function ofE [4]. This
gradient is usually called thephasongradient.
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Boundary conditions in the membrane representation.We now have to define what the
fixed boundary conditions of section 1 become in the language of directed membranes.
As illustrated in figure 1, we also get a boundary condition in theD-dimensional space:
the membrane is inscribed inside a (non-flat) polygon (or polyhedron), the projection of
which on thed-dimensional space gives the tiling boundary,∂Z [10, 11]. For instance,
the boundaries of 3→ 2 tilings are (non-flat) three-dimensional hexagons. We shall call
these boundaries the membraneframes. Such a frame can be precisely characterized as
the inverse image, via the projection, of the boundary of the zonotopal regionZ which is
being tiled [11]. It is therefore a subset of the boundary of the hypercube from whichZ
originates. This frame results in conditions on the functionsφ, on the boundary∂Z of Z.

In the case of free or periodic boundary conditions, the functionsφ have free or suitable
periodic conditions on the boundary of the domainsD on which they are defined (here, we
use the notationD instead ofZ to denote domains which might be non-zonotopal).

2.2. Continuous limit

Once a tiling has been ‘lifted’ in the higher-dimensional space, the so-obtained directed
membrane has a corrugated aspect, owing to its discrete character. Here, we wish to get rid
of this discrete character, at the infinite-size limit, in order to study more regular (‘smoother’)
objects, to which analytic tools can be applied. Moreover, these objects will turn out to
characterize the macroscopic states of the statistical ensemble of tilings (or membranes).
Let us explain how this continuous limit is taken.

So far, we have considered tiles of side length 1. To define the continuous limit, we
shall get rid of this discrete character, thanks to a suitable rescaling. For reasons that will
become clear in the following, this side length will go to 0 as the number of tiles tends to
infinity. The functions which represent the tilings are defined on a domainD of the real
space. IfN is the number of tiles inD, we need to rescale the tilings by a factor 1/N1/d .
Thus in any infinitesimal domain ddy in D, the number of tiles goes to infinity whenN
does. Moreover, we do the same rescaling in the perpendicular spaceε⊥.

Once we have done this rescaling, the tilings are represented by functionsφ which have
quite an irregular aspect at small scales. As it is usually done, for instance in polymer or
polymerized membrane theories, we shall treat small-scale fluctuations and large-scale ones
in a different way. Large-scale fluctuations are represented by regular functions whereas
microscopic ones around the latter functions are integrated in an entropic term. The latter
term will have an exponential form, and will therefore be treated via classical methods on
functional integrals.

Below, we shall adopt the following terminology: a membrane (or function) which has
microscopic fluctuations, or in other words which is the exact representation of a large tiling,
will be called faceted. A membrane, the fluctuations of which have been integrated in an
entropic term, will be calledsmooth. Finally, we shall go on calling atile anyd-dimensional
facet of a faceted membrane.

Given a smooth membraneφ, we can adopt the first naive definition of the entropy of
this membrane [10]:

s[φ] = lim
N→∞

log(Number ofN -tile faceted membranes close toφ)

N
. (3)

The important point here is to understand that, thanks to the previous rescaling,φ is
kept fixed while the number of tiles goes to infinity. This point allows us, among many
other things, to work with the same set of functions whatever the system size.
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In this definition, we have not characterized what ‘close’ meant. Let us first state that
its precise definition is unessential. To understand this point, let us focus on an analogy
with a far more simple statistical mechanics problem, where key ideas are easier to catch
on to: let us consider a closed box containing a perfect gas. This box is divided into two
parts of same volume,A andB, separated by a virtual frontier. Then one wants to know the
entropyσ(x0) of the system at the thermodynamic limit under the condition that a fraction
x0 of the molecules are contained inA (and therefore a fraction 1− x0 in B). Of course,
this quantityx0 fluctuates and can only be defined up to a small quantity1x. We can write

σ(x0) = lim
N→∞

log(Number of configurations such thatx = x0±1x)
N

(4)

whereN is the number of molecules. The important point here is that it can then be proven
that this definition ofσ(x0) doesnot depend, at the thermodynamic limit, on the precise
choice of1x, provided it is a finite quantity (see [20, p 30], for example, for a discussion
on this point).

In particular, if one looks for the more likely value ofx0, that is for the maximum of
σ(x0), one findsx0 = 0.5, still independently of the choice of1x. In other words, the
dominant states are such thatx is close, but not exactly equal tox0.

This point of view also applies to directed membranes: we shall see in the next paragraph
that this is all the more justified since at the infinite-size limit, only a few constraints cause
the faceted membranes to be ‘stuck’ to the smooth one,φ.

The next step consists of considering a pointy0 and an infinitesimal domain ddy in
D containingy0. This domain is large compared with the tile size, since this size tends
to 0. Moreover, since ddy is infinitesimal, the gradient∇φ can be considered as constant
in this domain. Therefore ddy contains a piece of tiling with an ‘infinite’ number of tiles
and a fixed phason gradientE = ∇φ(y0). This phason gradient is the only constraint on
this piece of tiling. In particular, its boundary conditions are free. Hence ifσ(E) denotes
the entropy per tile of a large free boundary tiling of global phason gradientE, then the
number of faceted membranes close toφ and defined on ddy is equal to

N (y0) = exp[N(ddy)σ (∇φ(y0))] (5)

whereN(ddy) is the (large) number of tiles of the previous membranes. This number of
tiles depends on the domain size (and on the total number of tiles,N ):

N(ddy) = N · n(∇φ) ddy

wheren(∇φ) is a function, the integral onD of which is equal to 1. Hence

N (y0) = exp[N · n(∇φ(y0))σ (∇φ(y0)) ddy]. (6)

Hence the total number of membranes close toφ on the whole domainD is given by

Nφ =
∏
y

N (y) =
∏
y

exp[N · n(∇φ(y))σ (∇φ(y)) ddy]. (7)

This product runs on all the infinitesimal domains ddy. Rigorously, since the membranes
are to coincide on the boundaries between the different domains, this product should be
divided by a boundary correction term. IfN →∞, the latter infinitesimal domains contain
an infinite number of tiles and these boundary terms disappear†. The total number of
membranes is therefore equal to the product of the individual numbers of membranes in
each domain ddy whenN is large.

† In other words, the entropy of two infinite-size subsystems in which∇φ is fixed is additive.
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In order to simplify the forthcoming calculations, we choose the infinitesimal domains
so that they form a hypercubic lattice which divides the large domainD in small cubes of
side a and of volumead = ddy. These domains are indexed by Greek letters and their
vertices by Latin letters.

We have already seen that ifa is small enough, thenφ can be considered as affine on
any domainα. Therefore this function only depends on its valuesφα,i on the verticesi of
the domain:

Nφ =
∏
α

exp[N · n(E(φα,i))σ (E(φα,i)) ddy]

= exp
∑
α

[N · n(E(φα,i))σ (E(φα,i)) ddy]

which is actually a functionN (φi) of the valuesφi on the lattice vertices.
To sum up, we have fixed the global shape of the faceted membranes: they are tied to

the lattice vertices. In other words, we have imposed their mean gradient on the domains
α to be equal to the gradient ofφ. It is actually theonly constraint we have imposed to
these membranes which are counted byNφ . Now, the key point is that this constraint is
sufficient to be sure that, at the infinite-size limit, the faceted membranes counted byNφ
tend towardsφ. Indeed, Henley [4] showed that for any dimensiond, if the gradientE is
fixed, if 1h(L) denotes the fluctuations in the perpendicular space of directed membranes
of linear sizeL, then

1h(L)

L
→ 0 whenL→∞. (8)

(More precisely [4], ifd = 1, then1h(L) ∼ L1/2, if d = 2, then1h(L) ∼ logL and if
d = 3, then1h(L) is uniformly bounded.)

After the 1/N1/d ∼ 1/L rescaling, these fluctuations tend to 0 whenN →∞. Therefore
all the membranes counted byNφ tend uniformly towardsφ. Hence, they areclose to φ,
whatever the precise definition of this term. Finally,

s[φ] = lim
N→∞

log(Nφ)
N

. (9)

Now, the total number of faceted membranes,N , is given by the integral†:

N =
∫ ∏

i

dφi N (φi) =
∫ ∏

i

dφi exp
∑
α

N [n(E(φα,i))σ (E(φα,i)) ddy]. (10)

So far, we have discretized the domainD to be sure that the membranes have infinite
number of tiles in any infinitesimal domainα, at the infinite-size limit. ThusNφ orN count
faceted membranes close to smooth membranes which areaffine on every such domain. To
get rid of this restriction, we shall now take the limita→ 0. Formally, we write

Dφ = lim
a→0

∏
i

dφi

and we turn the sum
∑

α into an integral. Thus

N =
∫
Dφ exp

[
N

∫
D
n(∇φ)σ) ddy

]
(11)

† Rigorously, in the case of free or periodic boundary conditions, the problem is invariant under translations ofφi
and this integralN is divergent. The membrane must be fixed to a point to avoid this divergence. For example,
we fix φ(y = 0) = 0.
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and

Nφ = exp

[
N

∫
D
n(∇φ)σ(∇φ) ddy

]
. (12)

Therefore

s[φ] =
∫
D
n(∇φ)σ(∇φ) ddy. (13)

As foreseen, this expression is independent of the precise characterization of the above
‘closeness’ in the definition ofs[φ].

This way of writing the entropy associated with a smooth membraneφ is quite similar
to Henely’s [4] (section 6.1). He gets this result thanks to a suitable coarse-graining of
the membranes. The coarse-graining of a faceted function is essentially its local mean in
a neighbourhood of diametera0 of every pointD†. Nevertheless, in his point of view,a0

is large but finite, whereas the smooth functions that we consider here integrate the local
fluctuations of aninfinite number of tiles whenN becomes infinite. Moreover, there is a
technical difference in the two expressions: Henley’s entropy is an entropy per unit area,
whereas ours is an entropy per tile. The ratio between these two entropies is actuallyn(∇φ),
the tile density (per unit area).

Indeed, this last quantity directly depends on the phason gradientE = ∇φ, since the
latter controls the different fractions of tiles and the different tiles do not necessarily have
the same area. The entropy per unit area,n(∇φ)σ(∇φ), will be denoted byτ(∇φ).

However, in the codimension-one case, all the tiles have the same area or volume, and
equation (13) can be simplified. The tile density,n, does not depend on the phason gradient
any longer and can be factorized before the integral. The exact value ofn depends on the
choice of the rescaling: so far, we have only specified its order of magnitude(1/N1/d) but
not its exact value. To calculaten, we chooseφ to be zero everywhere. Therefore∇φ = 0
andσ(∇φ) = σ0. The entropy per tiles[φ] is also equal toσ0, since this membrane has a
vanishing gradient. Henceσ0 = n

∫
D σ0 ddy andn = 1/V (D), the inverse volume ofD.

In the codimension-one case,

s[φ] =
∫
D σ(∇φ) ddy

V (D) (14)

which is the expression we gave in [10].
To sum up, we have coded the macroscopic states of this statistical ensemble by an

internal parameterφ, and we have calculated the entropy associated with these states. Let
us emphasize that the functionals[φ] is expressed in terms of thefree boundary tiling
entropyσ , whatever the conditions on the boundary∂D of the domainD. An example of
smooth functionφ is displayed in figure 2.

2.3. Dominant states in the statistical ensemble

The faceted membranes defined onD that have the good boundary conditions are counted
by

N =
∫
φ∈F
Dφ exp[Ns[φ]] . (15)

This functional integral is taken upon the setF of functions which are smooth representations
of faceted membranes.

† More precisely, the coarse-graining is a convolution product ofφ and another function of spatial extensiona0.
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Figure 2. A smooth functionφ : R2→ R and its frame, in the 3→ 2 case.

Moreover, the entropy per tile associated with this set of all the membranes (or tilings)
is given by

S = lim
N→∞

logN
N

. (16)

Now, we suppose that there exists a unique functionφmax that maximizes the entropy
functional s[φ]. This point will be discussed at the end of this section. Moreover, we
suppose that the functional is non-singular near this maximum, i.e. it has a quadratic
behaviour:

s[φ] = s[φmax] −
∫
D

ddu
∫
D

dv ku,v(φ(u)− φmax(u), φ(v)− φmax(v))+ · · · (17)

wherek is a positive quadratic form, whicha priori depends on the point(u, v).
Hence, nearφmax,N is a Gaussian functional integral, and thanks to a generalized

saddle-point argument, we obtain

S = lim
N→∞

log(N )
N

= s[φmax].

This is a classical result in statistical physics: at the infinite-size limit, the total entropy
is equal to the entropy of a dominant macroscopic state. In other words, the statistical
ensemble of faceted membranes is dominated by membranes close toφmax. In the space
of membranes, the distribution is ‘peaked’ aroundφmax at the infinite-size limit, and looks
more and more like a Dirac distribution.

To close this section, we must discuss the assumption of uniqueness ofφmax. We shall
use a general convexity argument: if a functionf is strictly concave on a convex setC
and if f has a maximum onC, then this maximum is unique.

Now, the setF of functions is convex: whatever their boundary conditions on∂D, let
φ1 andφ2 be any two smooth functions inF and letλ be any real number between 0 and
1, thenφλ = λφ1 + (1− λ)φ2 is also an element ofF . In particular, if∇φ1 and∇φ2

satisfy the good conditions to insure thatφ1 andφ2 are inF , by linearity of the gradient,
∇(λφ1 + (1− λ)φ2) satisfies the same conditions; whatever the boundary conditions,φλ
also satisfies them.
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Let us now check whethers[φ] is concave: it is an integral, and therefore a positive
linear combination of functions ofφ (the entropies per unit area). If we prove that all these
functions are concave, then it follows thats[φ] is concave. Now, the entropy at the point
y in D is the composition ofτ(E) and the functionφ 7→ ∇φ(y), which is in turn a linear
function. Hence we only need to prove thatτ(E) is a concave function ofE.

This property is a little stronger than the generalrandom tiling modelhypothesis, which
states that the free entropy has a unique maximum as a function of the gradientE, and is
quadratic near this maximum [4]:

τ free(E) ' τ free
0 − 1

2K
freeE2 (18)

where K free is the so-called tensor of phason elastic constants. Even if our stronger
hypothesis isa priori valid for a more restricted set of models, let us note that it is satisfied
in all exactly solvable tiling models [21–24]†. The concavity ofs[φ] and the uniqueness of
φmax are therefore reasonable hypotheses.

Finally, let us remark that since this maximum is unique, it will respect all the underlying
symmetries of the problem. We shall see an illustration of this fact in the following.

3. Relationship between different boundary conditions

In principle, whenever the free boundary entropyτ is known, the functionals[φ] is precisely
defined, and one can therefore get the fixed boundary entropy. Theoretically, we are able
to deduce the maximum entropy of fixed boundary tilings,τ fixed

0 , as well as the phason
elastic constants,Kfixed, from their counterpart in the free boundary case,τ free

0 et K free,
and to invert these relations. This was done in the 3→ 2 case, in [10]‡, in the so-called
quadratic approximation, which consists of estimating the free boundary entropy by its
quadratic development (equation (18)) near its maximum. Here, we shall go further and
give a complete treatment of this 3→ 2 case. We shall also present some related work in
the case of different fixed boundary conditions.

To go beyond the quadratic approximation, we shall characterize the maximum of the
entropy functionals[φ] by means of a functional derivation. Ifs[φ] = ∫D n(∇φ)σ(∇φ) ddy,
then

δs = s[φ + δφ] − s[φ]

= 1

V (D)

∫
D

dτ (∇φ(y)) · ∇(δφ) ddy

= −1

V (D)

∫
D
δφ div(dτ ) ddy. (19)

Hence,

δs

δφ(y)
= −div(dτ (∇φ(y))). (20)

Thereforeφmax is the functionφ which satisfies this equation and which has good boundary
conditions.

† A class of tilings is known to violate this hypothesis [25], but this is a quite singular case: the (unique) maximum
coincides with a phase transition and is thus not of quadratic nature.
‡ In this reference, the value 0.253 of the diagonal entropy in the quadratic approximation was erroneous, because
of badly controlled boundary effects. The actual value is 0.251.
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3.1. Hexagonal tilings

Expression (20) is general. In the 3→ 2 case, it reads

∂2τ

∂E2
1

∂2φ

∂x2
+ 2

∂2τ

∂E1∂E2

∂2φ

∂x∂y
+ ∂2τ

∂E2
2

∂2φ

∂y2
= 0 (21)

whereE = (E1, E2).
The coefficients∂

2τ

∂E2
1
, ∂2τ
∂E1∂E2

and ∂2τ

∂E2
2

are known. Indeed, in the 3→ 2 case, there exists

an analogy between the tilings and the ground states of an antiferromagnetic Ising model
on a triangular lattice [21]. The entropy can then be derived from the previous solution of
this Ising model [26]. In the latter reference, the entropy is written in terms of chemical
potentials. Some algebraic manipulations are therefore necessary to write it in terms ofE,
and then obtain the above coefficients [11]:

∂2τ

∂E2
1

= −π
9

1

sinθ

(
1+ w2

1− w2
− cosθ

)
(22)

∂2τ

∂E1∂E2
= π

3
√

3

w

sinθ

2− w2

1− w2
(23)

∂2τ

∂E2
2

= −2π

3

w

1− w2

1

sinφ
(24)

whereθ = π
√

2
3 (E1+

√
2), φ =

√
2
3πE2, andw = tan(θ/2)cotan(φ/2).

The partial differential equation (21) can be solved by means of numerical calculations.
The idea is to discretize the domainZ, which is a hexagon in this case, and to use an iterative
process: at each step, a functionφk is computed. The above coefficients are calculated in
terms ofφk. Then φk+1 is the solution of a linear system which is the discrete version
of equation (21). The sought function is the fixed point of this iterative process, which
is reached after about 10 iterations. This method was used in [11] and gave satisfactory
numerical results.

However, more recently, we were aware of related works by mathematicians who are
interested in similar problems. They are indeed able to exactly compute the functionφmax

means of purely combinatoric methods [27, 28]: the idea is to calculate the number of fixed
boundary tilings with a precise distribution of vertical tiles upon a given horizontal line.
The value ofφmax on this horizontal line is then given by the distribution of vertical tiles
which maximizes the number of such tilings at the infinite-size limit.

This exact solution points up a very singular phenomenon. The above authors called it
the arctic circle phenomenon: at the infinite-size limit, in the tiling representation in two
dimensions, there is a central region ofε which is circular in the diagonal case and elliptic
in general, inside which the tiling is random—in this sense that it contains the three kinds
of tiles. Outside this region, the tiling is ‘frozen’: as illustrated in figure 3, there are six
regions where there are only one kind of tiles, and where the entropy is equal to zero.

In these regions, the functionφmax is rigorously linear and its gradient is constant. Inside
the central region, in the diagonal case, the phason gradient ofφmax is equal to [27]:

E1 = −
√

2+ 3

π
√

2
[cotan−1f (x, y)+ cotan−1f (−x, y)] (25)

E2 = 1

π

√
3

2
[cotan−1f (x, y)− cotan−1f (−x, y)] (26)
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Figure 3. A randomly generated 3→ 2 tiling. At the infinite-size limit, there is a circular
central region (the ‘arctic circle’ [25]), where the tiling contains three kinds of tiles, and six
‘triangular’ regions, where the tiling contains only one kind of tiles and is said to be ‘frozen’.

wheref (x, y) = 1
2
√

3

8/
√

3xy− 8
3y

2+2√
1−4/3(x2+y2)

, if the side of the hexagon has been rescaled to 1. In

this expression and the previous ones, the origin of the coordinates is at the centre of the
hexagon, the axis(Ox) is pointed towards a vertex of the hexagon.

These expressions characterizeφmax. In fact, the resulting function is very close
to the function showed in figure 2, which was actually computed in the quadratic
approximation (17) [10]. Now, it is possible to compute the entropy per tile associated with
φmax: a simple numerical calculation givesS[φmax] = 0.2616(3). This value is in exact
agreement with the exactly known diagonal entropy of fixed boundary tilings. These results
are therefore a validation of our continuous approach (coarse graining). As announced, we
have established an exact link between free and fixed boundary tilings.

This functionφmax deserves a quick qualitative description; sinceφmax is very close to
the function displayed in figure 2, we shall use this figure to illustrate our arguments: first,
when the boundary is an hexagon, it has a threefold symmetry and, as foreseen, the solution
φmax respects this symmetry. Second, because of the strong influence of the boundary, there
is a gradient of entropy between the boundary and the bulk. Indeed, near the centre of
the tiling, the gradient ofφmax is very close to the free boundary one, whereas far from
the centre, this gradient becomes more and more influenced by the boundary and becomes
singular out of the arctic circle; there, the entropy is zero. The fixed boundary tilings
provide a very interesting model having an inhomogeneous entropy distribution.

To close this discussion, let us emphasize that this infinite-size limit cannot be called
a ‘thermodynamic limit’ because of this lack of homogeneity: in statistical mechanics, a
system is said to be at the thermodynamic limit if its properties do not depend on how
it tends to infinity. In particular, they must be homogeneous in the system and must not
depend on the container shape (here, the boundary) [20]. Here, the situation is far from this
one, since even the stoichiometry depends on the boundary shape.
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Figure 4. Left: a zigzag boundary, without phason strain. Right: tiling detail; the boundary
(heavy line) is globally—but not locally—straight.

3.2. Other kinds of tilings

So far, we have only considered zonotopal fixed boundaries. The reason for this choice
is that the first motivation of this work was to establish the link between free boundary
tilings and tilings built by means of the so-called partition method, the aim of which was
to develop a new approach to these tiling questions [7–11]. The latter tilings precisely
have zonotopal boundary conditions, by construction. However, there is no reason why the
previous method could not be applied to other kinds of boundaries. In this section, we shall
analyse tilings, the boundary of which is fixed, but which nevertheless have a free boundary
entropy.

Indeed, if the boundary is fixed but imposes a uniform phason gradient, that is to say
the membrane frame lies in ad-dimensional plane of gradientE = E0, then the affine
membrane of gradientE0 has on the one hand good boundary conditions, and on the other
hand satisfies the partial differential equation (21) (since its second-order derivatives are
equal to zero). This membrane is therefore the functionφmax and its entropys[φmax] is
equal to the free boundary one,τ(E0).

More precisely, let us analyse a 3→ 2 class of tilings, the fixed boundary of which is
flat in the membrane representation in three dimensions, that is to say does not impose any
global phason strain to the tilings. This kind of boundary is illustrated in figure 4.

At the infinite-size limit and in the membrane point of view, after rescaling, the boundary
becomes a flat hexagon: the functionφ is constrained to zero on this boundary. Therefore
the functionφ = 0 maximizes the entropy and, at the infinite-size limit, this entropy is
equal toσ free

0 .
We have tested this theoretical prediction by a direct calculation of this entropy. The

method is developed in appendix A.3. It uses again the Gessel–Viennot method [18, 19].
The entropy of very large tilings can then be numerically reached and fitted to get its
infinite-size limit. We find an entropy per tile of 0.323 06(4), which is precisely the free
boundary entropy.

To close this section, let us draw attention to numerical simulations by Joseph and Baake
[29]: they analysed the configurational entropy of random 4→ 2 tilings, the boundary of
which is fixed and flat (in four dimensions), as in our previous example (the global phason
strain in zero). As foreseen, the entropy that they eventually found was equal to the free
boundary one, which was itself numerically estimated.
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4. Conclusion

Thanks to a continuous approach in the membrane point of view at the infinite-size limit,
we have been able to describe the dominant states of statistical ensembles of tilings. In
particular, this method has enabled us to establish a quantitative link between two exactly
solvable models of statistical mechanics, the free and fixed boundary tilings of 60 degree
rhombi. In the latter, a very remarkable event occurs, the arctic circle phenomenon: there
exist ‘frozen’ regions of the tilings in which there is only one kind of tile and where the
entropy is therefore zero. This lack of homogeneity is responsible for the difference of
entropy between the two problems, even if they are at first sight closely related. Moreover,
this infinite-size limit cannot be called a thermodynamic limit because of this lack of
homogeneity.

In the case of larger dimension or codimension tilings, a similar treatment would require
the knowledge of the free boundary entropies. Unfortunately, despite a great deal of
work, these entropies are not known yet. However, the maximum (diagonal) entropies
and the phason elastic constants are numerically known in many cases. It could therefore
by possible, in these cases, to compute the fixed boundary entropies and phason elastic
constants, in the quadratic approximation. However, this approximate method would not
be conclusive on the existence of an arctic circle phenomenon in such problems, which is
nevertheless a captivating open question.

Finally, it is worth emphasizing that this method could be useful in describing how any
constraint imposed at the boundary relaxes into the bulk. In this paper, we have studied
two kinds of boundaries. The first one, the straight boundary related to partition problems,
imposes to the tiling the strongest constraint among all boundary conditions: the tilings must
relax continuously from a completely crystalline structure to a random one. Physically, such
tilings (in three dimensions) could model the result of a growth of quasicrystalline materials
on crystalline phases. More generally, more complex physical situations, such as extended
topological defects (such as dislocations), or other kinds of interfaces, coulda priori be
translated in suitable boundary conditions. The numerical method we have developed could
then be applied to any such boundary conditions and could be useful in describing how the
material relaxes in the presence of such constraints.

Note added in proof. We have recently been made aware of related works in the Aztec diamond tiling problem
[30].

Appendix. The Gessel–Viennot method

In this appendix, we present a combinatorial method for the counting of configurations of
avoiding paths on planar graphs, the Gessel–Viennot method, which can be very useful in
the enumeration of fixed boundary tilings. We illustrate this method in two 3→ 2 cases
discussed in this paper.

A.1. The method

We shall not extensively present the Gessel–Viennot method [18, 19]. We shall instead give
a brief description and try to explain the underlying ideas. The method is rather general: it
can be applied to any oriented graph without cycles (acyclic oriented graph), in which two
families of vertices,ui andvi , i = 1, . . . , n, are selected. This graph is supposed to satisfy
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Figure 5. A hexagonal boundary 3→ 2 tiling (left): the broken worms can be translated into a
set ofp avoiding oriented paths on a square lattice (right). Theith path starts from the (fixed)
vertexui and goes to the (fixed) vertexvi . There arep paths. The side lengths of the hexagon
arep, k and l.

the property ofcompatibility: if two paths on this graph are going respectively fromui1 to
vj1 and fromui2 to vj2 and if these paths do not cross, theni1 < i2 andj1 > j2. Note that
this property is very specific to two-dimensional graphs.

We are interested in the number of configurations ofn avoiding (or non-intersecting)
paths, theith path going fromui to vi . If we denote byλij the number of paths going from
ui to vj , then the method states that the number of configurations is equal to the following
determinant:

Dn = det(λij )16i,j6n. (27)

The idea of the proof is the following: in this determinant, all path configurations,
whether intersecting or not, theith path going fromui to vσ(i), for any permutationσ , are
counted, with a+ or − sign. All interesting configurations cancel two by two and only the
non-intersecting configurations remain. They are exactly the sought configurations thanks to
the property of compatibility. The reader interested in more details can refer to the review
paper by Stembridge [19].

A.2. Hexagonal boundaries

In this section, the previous method will be used to rederive MacMahon’s formula (see
section 1). Consider a 3→ 2 tiling of a hexagonal region of side lengthsk, l and p
(figure 5, left). In such a tiling, one can follow sequences of tiles which have a horizontal
edge. These lines, which are usually called worms, cross the tiling from bottom to top. The
tiling can now be slightly deformed so that a kind of tiles become squares (figure 5) and
thep worms can be seen as up-going paths on a square lattice (figure 5, right).

Therefore the previous theory on avoiding paths on an acyclic oriented graph can be
applied. The numberλij of paths joining the verticesui andvj is a binomial coefficient:

λij = (k + l)!
(k + j − i)!(l + i − j)! . (28)

We have to compute the following determinant:

Dp(k, l) = det(λij ) = det

[
(k + l)!

(k + j − i)!(l + i − j)!
]

16i,j6p
(29)
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Dp(k, l) = [(k + l)!]p det

[
1

(k + j − i)!(l + i − j)!
]

16i,j6p

= [(k + l)!]p 1

(k + p − 1)! . . . k!

1

(l + p − 1)! . . . l!

× det

[
(k + p − i)!
(k + j − i)!

(l + i − 1)!

(l + i − j)!
]

16i,j6p
. (30)

The first factor equals [(k + l)!]p (k−1)![2]

(k+p−1)![2]
(l−1)![2]

(l+p−1)![2] , where we have used again the
second-order factorial function. The second factor is denoted by1p. We shall use
the notation: P (p)j (i) = (k+p−i)!

(k+j−i)!
(l+i−1)!
(l+i−j)! . Since j 6 p, P

(p)

j is a polynomial of degree
(p − j)+ (j − 1) = p − 1.

We now use the following result concerning polynomials: ifQj , j = 1, . . . , p are
polynomials of degree smaller thanp − 1, if Qj =

∑p−1
i=0 a

(j)

i X
i , and if x1, x2, . . . , xp are

real numbers, then

det[Qj(xi)]16i,j6p = det(a(j)i )× VdM(x1, . . . , xp) (31)

where VdM(x1, . . . , xp) is the Van der Monde determinant of these real numbers. We recall
that

VdM(x1, . . . , xp) =

∣∣∣∣∣∣∣∣∣
1 x1 x2

1 . . . x
p−1
1

1 x2 x2
2 . . . x

p−1
2

...
...

...
...

1 xp x2
p . . . x

p−1
p

∣∣∣∣∣∣∣∣∣ . (32)

The proof of equation (31) is straightforward: the left-hand side matrix is the product of
the coefficient matrix and of the Van der Monde matrix. Note that VdM(1, 2, . . . , p) =
(p − 1)![2] .

Now, the calculation of1p is made by induction onp: if dp denotes the determinant
of the coefficients of the polynomialsP (p)j , j = 1, . . . , p, then thanks to the above results,
1p+1 = p![2]dp+1. After a tedious calculation, one finds that

dp+1

dp
= P (p+1)

p+1 (k + p + 1) = (k + l + p) . . . (k + l + 1). (33)

So by induction onp,

dp = 1

[(k + l)!]p
(k + l + p − 1)![2]

(k + l − 1)![2]
. (34)

Finally, we obtain

Dp(k, l) = (k + l + p − 1)![2](k − 1)![2](l − 1)![2](p − 1)![2]

(k + p − 1)![2](l + p − 1)![2](k + l − 1)![2]
(35)

which is precisely MacMahon’s enumerative formula (17), rewritten in terms of generalized
factorials.

A.3. Flat fixed boundaries

This method can also be applied to the tilings studied in section 3.2 (figure 4). However, in
this case, we shall not be able to get an explicit enumerative formula and some numerical
calculations will be necessary to have access to the infinite-size entropy.
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Figure 6. The worm representation of a flat-boundary tiling (left) and its counterpart in the
avoiding path representation (right), in the case when the number of linesn is equal to 5.

Table A1. Entropy per tile ofn-worm tilings with flat boundaries. These boundaries do not
impose any global phason strain.

Number of worms Entropy per tile

n = 21 S = 0.311 881
n = 31 S = 0.315 379
n = 61 S = 0.319 098
n = 81 S = 0.320 065
n = 101 S = 0.320 653
n = 151 S = 0.321 446

With these boundary conditions, the worm and path representations of figure 5 must be
modified, as illustrated in figure 6.

The two main differences are the following: first, the verticesui andvi are not as simply
distributed as in figure 5. Second, some of then paths are constrained by the presence of
two vertical bounds (heavy broken curves). Therefore, the numberλij of paths starting from
ui and going touj might be different from a simple binomial coefficient. This number can
be calculated thanks to the usual ‘mirror’ or ‘image method’ (see [31], for instance). In the
diagonal case, with the indexation of figure 6 and whenn is odd,

λij =
(

pij
pij+3(i−j)

2

)
−
(

pij
pij+3(i+j)−2

2

)
−
(

pij
pij+6n−3(i+j)+4

2

)
(36)

where

pij = 2n =
∣∣∣∣n+ 1

2
− j

∣∣∣∣− ∣∣∣∣n+ 1

2
− i
∣∣∣∣ (37)

is the length of any path going fromui to vj .
The method is now strictly similar to the previous one. However, the complete

calculation of the determinant det(λij ) seems out of reach. That is why we have chosen to
compute it numerically for large systems. The so-obtained values are displayed in table A1.
In this table,n still denotes the number of worms.

The last four data can be fitted with the following law:

S(n) = S0− A
n
+ B

n2
(38)

we getS0 = 0.323 06(4), which is the infinite-size entropy (andA ' 0.246,B ' 0.245).
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